The response of invertebrate communities to a moisture gradient in artificial soils of Ukrainian steppe arid zone
Abstract
A.V. Babchenko, M.P. Fedushko, E.I. Timchiy, Yu.A. Huska, S.V. Khalus
Animals were sampled within the experimental area using traps to investigate the spatial and temporal variation in abundance, species richness, and species composition of invertebrate communities. A total of 60 traps were operated simultaneously during each sampling period. Traps were emptied 26 times every 7-9 days each year. Plant water availability, precipitation, wind speed, air temperature (minimum, maximum, daily mean), air humidity, and atmospheric pressure were used as ecological predictors of invertebrate community status and structure. Two-dimensional geographic coordinates of sampling locations were used to create a set of orthogonal spatial variables based on eigenvectors. We used time series of sampling dates to produce a set of orthogonal eigenvector time variables. The moisture content in technosols was the most important factor determining the terrestrial invertebrate community's temporal dynamics under semi-arid climate and reclaimed ecosystem conditions. Each ecological group of terrestrial invertebrates is homogeneous in terms of moisture gradient (xerophilic, xerozoophilic, mesophilic) and has a specific set of patterns best explain the species response to water content in technosols. However, one should consider the fact that the species response to soil water content is influenced not only by soil water content but also by a complex of other environmental, temporal and spatial factors. That is why the effect of other factors on the species response must be extracted previously to find real estimations of the species optima and tolerance. This task can be solved using the constrained correspondence analysis (CCA) or constrained redundancy analysis (RDA) depending on the type of response to ecological factors prevailing in the community – monotone or unimodal. We found that in more dry conditions, the prevalent species responses are unimodal asymmetric, in moister – bimodal, and in moderate conditions, the distributions are symmetric unimodal. The asymmetric species response to soil moisture in different parts of the soil humidity range may be assumed as predominantly due to the abiotic factors in the gradient's aridest margin and due predominantly to the biotic factors in the most humid margin of the gradient.
Keywords: species response, niche, optima, tolerance, reclamation, gradient, temporal dynamic
References
Allen, C.R., Angeler, D.G., Garmestani, A.S., Gunderson, L.H. & Holling, C.S. (2014). Panarchy: theory and application. Ecosystems, 17(4), 578–589. DOI https://doi.org/10.1007/s10021-013-9744-2
Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. 1–15.
Allen, R.G., Smith, M., Perrier, A. & Pereira, L.S. (1994a). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.
Allen, R.G., Smith, M., Perrier, A. & Pereira, L.S. (1994b). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.
Angeler, D.G., Drakare, S. & Johnson, R.K. (2011). Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society, 16(3), 5. https://www.jstor.org/stable/26268950
Austin, M.P. (1976). On non-linear species response models in ordination. Vegetatio, 33(1), 33-41. https://doi.org/10.1007/BF00055297
Austin, M.P. (1999). A silent clash of paradigms: some inconsistencies in community ecology. Oikos, 86(1), 170–178. DOI: 10.2307/3546582
Austin, M.P. (2013). Vegetation and Environment: Discontinuities and Continuities. Vegetation Ecology, Second Edition. Eddy van der Maarel and Janet Franklin. John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd., 52–84. https://doi.org/10.1002/9781118452592.ch3
Baho, D. L., Futter, M. N., Johnson, R. K. & Angeler, D. G. (2015). Assessing temporal scales and patterns in time series: Comparing methods based on redundancy analysis. Ecological Complexity, 22, 162–168. https://doi.org/10.1016/j.ecocom.2015.04.001
Beck, J. & Kitching, I.J. (2007). Correlates of range size and dispersal ability: a comparative analysis of sphingid moths from the Indo-Austalian tropics. Global Ecology and Biogeography, 16, 341–349. https://doi.org/10.1111/j.1466-8238.2007.00289.x
Bertness, M. & Callaway, R.M. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9(5), 191–193. https://doi.org/10.1016/0169-5347(94)90088-4
Bonsall, M.B. & Hastings, A. (2004). Demographic and environmental stochasticity in predator–prey metapopulation dynamics. Journal of Animal Ecology, 73, 1043–1055. https://doi.org/10.1111/j.0021-8790.2004.00874.x
Bonte, D., Baert, L. & Maelfait, J.-P. (2002). Spider assemblage structure and stability in a heterogenous coastal dune system (Belgium). Journal of Arachnology, 30, 331–343. doi: 10.1636/0161-8202(2002)030[0331:SASASI]2.0.CO;2
Borcard, D. & Legendre, P. (2002). All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.
Borcard, D., Legendre, P., Avois–Jacquet, C. & Tuosimoto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.
Bowker, M. A., Soliveres, S. & Maestre, F. T. (2010). Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology, 98(3), 551–560. doi:10.1111/j.1365-2745.2010.01647.x
Brandle, M., Durka, W., Krug, H. & Brandl, R. (2003). The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography, 26, 652–660. doi: 10.1034/j.1600-0587.2003.03513.x
Brandle, M., Ohlschlager, S. & Brandl, R. (2002). Range size in butterflies: correlation across scales. Evolutionary Ecology Research, 4, 993–1004.
Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255–279.
Brown, J.H. (1999). Macroecology: progress and prospect. Oikos, 87, 3–14. DOI: 10.2307/3546991
Buchholz, S. (2009). Community structure of spiders in coastal habitats of a Mediterranean delta region (Nestos Delta, NE Greece). Animal Biodiversity and Conservation, 32(2). 101–115.
Buchori, D., Rizali, A., Rahayu, G.A. & Mansur, I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas, 19, 1696–1702. DOI: 10.13057/biodiv/d190515
Burnham, K.P. & Anderson, D.R. (2002). Model selection and multi-model inference: a practical information-theoretic approach. Berlin: Springer.
Buzuk, G. N. (2017). Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76), 31-37.
Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh, C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. https://doi.org/10.1890/12-2053.1
Chase, J. M. & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363. https://doi.org/10.1098/rstb.2011.0063
Chase, J. M., M. A. Leibold, A. L. Downing, & J. B. Shurin. (2000). The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology, 81(9), 2485–2497. https://doi.org/10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2
Collins, S.L., Belnap, J., Grimm, N.B., Rudgers, J.A., Dahm, C.N., D'Odorico, P., Litvak, M., Natvig, D.O., Peters, D.C., Pockman, W.T., Sinsabaugh, R.L. & Wolf, B.O. (2014). A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 397–419. https://doi.org/10.1146/annurev-ecolsys-120213-091650
Colwell, R.K. & Futuyma, D.J. (1971). Measurement of niche breadth and overlap. Ecology, 52, 567–576. DOI: 10.2307/1934144
Cottenie, K., (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175–1182. doi:10.1111/j.1461-0248.2005.00820.x
Curtis, J. T., & McIntosh R. P. (1951). An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology, 32, 476–496. https://doi.org/10.2307/1931725
David, J.F., & Handa, I.T. ( 2010). The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biological Reviews, 85(4), 881–895. doi: 10.1111/j.1469-185X.2010.00138.x.
Desender, K., Ervinck, A. & Tack, G. (1999). Beetle diversity and historical ecology of woodlands in Flanders. Belgian Journal of Zoology, 129(1), 139–155.
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25. doi:10.1111/j.1365-2664.2009.01744.x
Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
Dray, S., Legendre, P. & Peres-Neto, P. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196, 483–493.
Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257–275. https://doi.org/10.1890/11-1183.1
Dunger, W., Wanner, M., Hauser, H., Hohberg, K., Schulz, H.-J., Schwalbe, T., Seifert, B., Vogel, J., Voigtländer, K., Zimdars, B. & Zulka, K.P. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45(3), 243–271. https://doi.org/10.1078/0031-4056-00083.
Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Dole?al, J. (2017). Niche asymmetry of vascular plants increases with elevation. Journal of Biogeography, 44(6), 1418–1425. doi:10.1111/jbi.13001
Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London.
Entling, W., Schmidt, M. H., Bacher, S., Brandl, R., & Nentwig, W. (2007). Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecology and Biogeography, 16, 440–448. doi:10.1111/j.1466-8238.2006.00305.x
Evett, S.R., Prueger, J.H. & Tolk, J.A. (2011). Water and energy balances in the soil-plantatmosphere continuum. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.). Handbook of soil sciences: properties and processes. 2nd ed. Boca Raton, Florida, USA: CRC Press. 6-1–6-44.
Gallé, R., Vesztergom, N. & Somogyi, T. (2011). Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary. Entomologica Fennica, 22, 29–38.
Gaston, K.J., Blackburn, T.M., & Lawton, J.H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66(44), 579–601. doi: 10.2307/5951
Gauch, H. G. & Whittaker, R. H. (1972). Coenocline simulation. Ecology, 53(3), 446–451. https://doi.org/10.2307/1934231
Ge B., Daizhen, Z., Jun, C., Huabin, Z., Chunlin, Z. & Boping, T. (2014). Biodiversity Variations of Soil Macrofauna Communitiesin Forestsina Reclaimed Coastwith Different Diked History. Pakistan Journal of Zoology, 46(4). 1053–1059.
Gerlach, J., Samways, M. & Pryke, J. (2013). Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation, 17(4), 831–850. https://doi.org/10.1007/s10841-013-9565-9
Gregory, R.D. & Gaston, K.J. (2000). Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526. https://doi.org/10.1034/j.1600-0706.2000.880307.x
Grinnell, J. (1917). The niche relationship of the California Thrasher. The Auk: Ornithological Advances, 34(4), 427–433. https://doi.org/10.2307/4072271
Hedde, M., Nahmani, J., Séré, G., Auclerc, A. & Cortet J. (2018). Early colonisationof constructed technosols by macro-invertebrates. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-018-2142-9
Heegaard, E. (2002). The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive models. Ecological Modelling, 157(2–3), 131–139. https://doi.org/10.1016/S0304-3800(02)00191-6
Hendrychova, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78.
Hendrychova, M., Salek, M., Tajovsky, K., & Reho, M. (2011). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology, 20 (5), 561–567. https://doi.org/10.1111/j.1526-100X.2011.00841.x
Hendrychová, M., Šálek, M. &