Parameters of adaptability, biological and economical valuable traits of soft wheat promising lines

Abstract

T.Z. Moskalets, A.H. Vovkohon, O.B. Ovezmyradova, H.V. Merzlova, O.M. Nevmerzhitska, N.M. Plotnytska, O.V. Gurmanchuk, V.A. Nasikovskyi, O.O. Kravets, V.V. Moskalets

Results of research of soft winter wheat new lines of hexaploid level by morphological features, biological properties and biochemical parameters were given. During 2018–2020 in the Northern part of the Central Forest-Steppe of Ukraine the assessment of the general adaptive capacity by the yielding capacity and biological-agronomic traits are given and promising ones are highlighted (Donzorna, Flonormyra, Polezoriana). The new wheat lines have proved themselves well given the consistently high winter, drought resistance, and productivity, coefficient of variation is low, variance of stability, homeostaticity, and selection value – high. According to the biochemical composition of the grain, the studied lines are characterized by medium and high ‘raw’ protein content and gluten content. New selection wheat lines own by the technological indicators (the volumetric bread outut of 100 g of drough, the total baking rating), flour quite satisfactory, good, and excellent score (Sviatdonivka, Flonormyra). The new wheat line Donzorna is characterized by the presence of 1BL/1RS wheat-rye translocation, which distinguishes it as a donor of resistance to biotic and abiotic factors and requires further more detailed study.

Keywords: Triticum aestivum L.; parameters of ecological plasticity and stability; 1BL/1RS wheat-rye translocation; Puccinia recondita f. sp. tritici Rob. ex Desm; yielding capacity; baking and technological properties of flour
 

References

Bolton, M.D., Kolmer, J.A., & Garvin, D.F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9(5), 563–575. Doi: 10.1007/s10681-011-0361-x

Crespo-Herrera, L.A., Garkava-Gustavsson, L., & Ahman, I. (2017). A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 154(14), 14–23. Doi: 10.1186/s41065-017-0033-5

Duan, X., Enjalbert, J., Vautrin, D., Solignac, C., & Giraut, T. (2003). Isolation of 12 microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia triticina. Molecular Ecology Notes, 3, 65–67. Doi: 10.1046/j.1471-8286.2003.00350.x

Gultyaeva, E., Shaydayuk, E., Goncharov, N., ?khmetova, A., Abdullaev, K., Belousova, M., & Kosman, E. (2016). Virulence of Puccinia triticina on Triticum and Aegilops species. Australas. Plant Pathology Journal, 45(2), 155–163. Doi: 10.1007/s13313-016-0395-6

Halkett, F., Simon, J.C., & Balloux, F. (2005). Tackling the population genetics of clonal and partially clonal organisms. Trends in Ecology & Evolution, 20, 194–201. Doi: 10.1016/j.tree.2005.01.001

Justesen, A.F., Ridout, C.J., & Hovmøller, M.S. (2002). The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathology Journal, 51, 13–23. Doi: 10.1046/j.0032-0862.2001.00651.x

Eberhart, S.A., & Russel, W.A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1–2), 36–40.

Ivanova, Y.N., Solovey, L.A., Loginova, D.B., Miroshnikova, E.E., Dubovets, N.I., & Silkova, O.G. (2019). The creation and characterization of the bread wheat line with a centric translocation t2dl.2rl. Vavilov Journal of Genetics and Breeding, 723, 846. Doi: 10.18699/VJ19.558

Khangildin, V.V., & Litvinenko, N.A. (1981). Homeostaticity and adaptability of winter wheat varieties. Nauchno-tekhnicheskiy Biulleten VSGI, 39, 814.

Kolmer, J. A., & Liu, J. Q. (2000). Virulence and molecular polymorphism in international collections of the wheat leaf rust fungus Puccinia triticina. Phytopathology, 90(4), 427–436. Doi: 10.1094/PHYTO

Kolmer, J.A., & Ordoñez, M.E. (2007). Genetic differentiation of Puccinia triticina populations in Central Asia and the Caucasus. Phytopathology, 97, 1141–1149. Doi: 10.1094/PHYTO-97-9-1141

Kozub, N.A., Sozinov, I. A., Karelov, A.V., Bidnyk, H.Y., Demianova, N.A., Sozinova, O.I., Blume, Y.B., & Sozinov, A.A. (2018). Studying recombination between the 1RS arms from the rye Petkus and Insave involved in the 1BL.1RS and 1AL.1RS translocations using storage protein loci as genetic markers. Cytology and Genetics, 52(6), 440–447. Doi: 10.3103/S0095452718060063

Li, S., Tang, H., Zhang, H., Mu, Y., Lan, X., & Ma, J. (2020). A 1BL/1RS translocation contributing to kernel length increase in three wheat recombinant inbred line populations. Czech Journal of Genetics and Plant Breeding, 56, 43−51. https://doi.org/10.17221/79/2019-CJGPB

Liu, M., Rodrigue, N., & Kolmer, J. (2014). Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution. Heredity, 112, 443–453. Doi 10.1038/hdy.2013.123

Liubych, V., Novikov, V., Polianetska, I., Usyk, S., Petrenko, V., Khomenko, S., Zorunko, V., Balabak, O., Moskalets, V., & Moskalets, T. (2019). Improvement of the process of hydrothermal treatment and peeling of spelt wheat grain during cereal production. Eastern-European Journal of Enterprise Technologies, 3(11), 40–51. Doi: 10.15587/1729-4061.2019.170297

Meltz, G., Schlegel, R., & Thiele, V. Genetic linkage map of rye (1992). Theoretical and Applied Genetics, 83, 33–45. https://doi.org/10.1007/BF00223842

Mitrofanova, O. P., Strelchenko, P. P., Konarev, A. V., & Balfourier, F. (2009). Genetic differentiation of hexaploid wheat inferred from analysis of microsatellite loci. Russian Journal of Genetics, 45(11), 1351–1559. Doi 10.1134/S102279540911009X

Morgounov, A. I., Gummadov, N., Belen, S., Kaya, Y., Keser, M., & Mursalova, J. (2014). Association of digital photo parameters and NDVI with winter wheat grain yield in variable environments Turk. Journal of Agriculture and Food Research, 38, 624–632. Doi: 10.3906/tar-1312-90

Motsny, I. I., Blagodarova, E. M., & Rybalka, A. I. (2017). Cytogenetic characteristics of wheat lines with modified 1RS.1BL rye-wheat translocation. Cytology and Genetics, 51, 331–338. https://doi.org/10.3103/S0095452717050073

Narang, D., Kaur, S., Steuernagel, B., Ghosh, S., Bansal, U., Li, J., Zhang, P., Bhardwaj, S., Uauy, C., Wulff Brande, B., & Chhuneja, P. (2020). Discovery and characterisation of a new leaf rust resistance gene introgressed in wheat from wild wheat Aegilops peregrina. Scientific Reports, 10, 7573. https://doi.org/10.1038/s41598-020-64166-2

Oak, M. D., & Tamhankar, S. A. (2017). 1BL/1RS translocation in durum wheat and its effect on end use quality traits. Journal of Plant Biochemistry and Biotechnology. 26, 91–96. https://doi.org/10.1007/s13562-016-0366-6

Ordoñez, M. E., & Kolmer, J. A. (2007). Simple sequence repeat diversity of a worldwide collection of Puccinia triticina from durum wheat. Phytopathology, 97, 574–583. Doi 10.1094/PHYTO-97-5-0574

Park, R. F., Jahoor, A., & Felsenstein, F. G. (2000). Population structure of Puccinia recondita in Western Europe during 1995 as assessed by variability in pathogenicity and molecular markers. Phytopathology, 148, 169–179. Doi: 10.1046/j.1439-0434.2000.00458.x

Sukumaran, S., Reynolds, M. P., & Sansaloni, C. (2018). Genome-wide association analyses identify qtl hotspots for yield and component traits in Durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science, 9, 81. Doi: 10.3389/fpls.2018.00081

Szabo, L. S., & Kolmer, J. A. (2007). Development of simple sequence repeat markers for the plant pathogenic rust fungus Puccinia triticina. Molecular Ecology, 7, 708–710. Doi: 10.1111/j.1471-8286.2007.01686.x

??st?rm?n, L. ?. (2002). Metody Issledovaniya Belkov i Nukleinovykh Kislot [Methods of Study of Proteins and Nucleic Acids]. ??TsN????, ??oskva (in Russian).

Pakudin, V. Z. (1973). Assessment of ecological plasticity of varieties. In: Genetic Analysis o f Quantitative and Qualitative Traits Using Mathematical and Statistical Methods. VNIITEISKh, Moscow. P??. 40–44.

Payne, P. I., & Lawrence, G. J. (1983). Catalologue of Alleles for the Complex Gene Loci Glu-A1, Glu-B1, Glu-D1 Wich Code for High-Molecular-Weight Subunits of Glutenin in Hexaploid Weat.

Pershina, L., Trubacheeva, N., Badaeva, E., Belan, I., & Rosseeva, L. (2020). Study of androgenic plant families of alloplasmic introgression lines (H. vulgare) – T. aestivum and the use of sister dh lines in breeding. Plants, 69, 764–766. Doi: 10.3390/plants9060764

Pershina, L. A., Belova, L. I., Trubacheeva, N. V., Osad?haya, T. S., Shumny, V. K., Belan, I. A., Rosseeva, L. P., Nemchenko, V. V., & Abakumov, S. N. (2020). Alloplasmic recombinant lines (H. vulgare) – T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties. Vavilov Journal of Genetics and Breeding, 711, 846. https://doi.org/10.18699/VJ18.393

P?per?lia, F. ?. (1989). Polimorfizm gliadina i ego svyaz s kachestvom. adaptivnimi svoystvami sortov myagkoy ozimoy pshenitsy [Gliadin Polymorphism and Its Relationship With Grain Quality, Productivity and Adaptive Properties of Soft Wheat Varieties]. Agropromizdat, ??oskva, ???. 138–150 (in Russian).

Peros, H., Dalezios, G., Liakakos, E., Delis, C., Lazaridou, T.B., & Xyniasioannis, I. N. (2015). Molecular Detection of the 1BL.1RS Translocation in Hellenic Bread Wheat Cultivars. Cereal Research Communications, 43(2), 318–325. Doi: https://doi.org/10.1556/crc.2014.0047

Peterson, R.F., Campbell, A., & Hannah, A. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research

Share this article