Influence of the exopolysaccharides of polyphenol-conditioned lactic acid bacteria on gut microecology and bacterial translocation
Abstract
B. Badra, D.M. Soungalo, K. Hafidha, M. Catherine, T. Aicha
The aim of this work was to assess in vivo prebiotic effects of exopolysaccharides produced by polyphenols extract-conditioned lactic acid bacteria. The polyphenolic content of Thymus fontanesii was extracted in water by sonication, with a yield of 41.5% and 156 mg equivalent of gallic acid/g. Gallic, caffeic, syringic, vallinic and carboxylic acids, catechin, and epicatechin were the important phenolic acids identified in the extract. Then, two dairy industrial strains Streptococcus thermophilus and Lactobacillus bulgaricus were treated at different concentrations with the extract to improve exopolysaccharides production. Streptococcus thermophilus yielded more exopolysaccharides, thrice than control (826 mg/l vs 219 mg/l), in presence of 100 μg/ml (concentration of 0.01 mg/ml) of the polyphenolic extract. Besides, polyphenols had no significant effect on Lactobacillus bulgaricus for exopolysaccharides production. Last, the effects of Streptococcus thermophilus exopolysaccharides produced in presence of the polyphenols were evaluated on gut microecology composition on some bacteria and bacterial translocation in liver, spleen, kidneys, and lungs. The molecules shaped Wistar Rat gut microbiota in favour of beneficial lactic acid bacteria and in detriment of pathogenic bacteria, and prevented bacterial translocation. Therefore, the exopolysaccharides exhibited considerable prebiotic properties.
Keywords: Bacterial translocation; lactic acid bacteria; exopolysaccharides; polyphenols; prebiotic; Thymus fontanesii
References:
Adebayo-tayo B.C., Onilude A.A. (2008). Screening of Lactic Acid Bacteria strains isolated from some Nigerian Fermented Foods for EPS Production. World Appl Sci J. 4 (5):741-747.
Alberto M.R., Arena M.E., Manca de Nadra M.C. (2007). Putrescine production from agmatine by Lactobacillus hilgardii:Effect of phenolic compounds. Food Control 18 (8):898–903.
Belkaid Y., Hand T. (2014). Role of the Microbiota in Immunity and inflammation. Cell. 157(1):121–141.
Bello F.D., Walter J., Hertel C., Hammes W.P. (2001). In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol. 24 (2):232–237.
Berg R. D. (1999). Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol. 473:11-30.
Borges A., Ferreria C., Saavedra M. J., Simoes M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 00 (0):1-10.
Bos R., Van der Mei H.C., Busscher H.J. (1999). Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev. 23 (2):179-230.
Boubakeur B., Tirtouil A., Khadem H., Meddah B., Ahcen S. (2016). An assessment of the effect of aqueous extract from Thymus fontanesii on growth, aggregation and biofilm formation of pathogenic and probiotic bacteria. J Appl Environ Bio Sci. 6 (7):51-60.
Bourlioux P., Koletzko B., Guarner F., Braesco V. (2003). The intestine and its microflora are partners for the protection of the host:report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002. Am J Clin Nutr. 78(4):675-683.
Buddington R. (2009). Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem. In:Charalampopoulos
D., Rastall R. A. (Eds.) Prebiotics and Probiotics Science and Technology. Springer:1-31.
Caggianiello G., Kleerebezem M., Spano G. (2016). Exopolysaccharides produced by lactic acid bacteria:from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol. 100 (9):3877-3886.
China, R., Mukherjee S., Sen B., Bose S., Datta S., Koley H., Ghosh S., Dhar P. (2012). Antimicrobial activity of Sesbania grandiflora flower polyphenol extracts on some pathogenic bacteria and growth stimulatory effect on the probiotic organism Lactobacillus acidophilus. Microbiol Res. 167 (8):500-506.
Dob T., Dahmane D., Benabdelkader T., Cheighoum C. (2006). Composition and antimicrobial activity of the essential oil of Thymus fontanesii. Pharm Biol. 44 (8):607-612.
Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3):350–356.
Dutta D., Cole N., Willcox M. (2012). Factors influencing bacterial adhesion to contact lenses. Mol Vis. 18:14-21.
Gibson G. R., Roberfroid M. B. (1995). Dietary modulation of the human colonic microbiota:Introducing the concept of prebiotics. J Nutr. 125 (6):1401-1412.
Górska-Frączek S., Sandström C., Kenne L., Paściak M., Brzozowska E., Strus M., Heczko P., Gamian A. (2013). The Structure and Immunoreactivity of Exopolysaccharide Isolated from Lactobacillus johnsonii strain 151. Carbohydr Res. 378:148-153.
Hongpattarakere T., Cherntong N., Wichienchot S., Kolida S., Rastall R.A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr Polym. 87 (1):846-852.
Jakesevic M., Xu J., Aaby K., Jeppsson B., Ahrné S., Molin G. (2013). Effects of bilberry (Vaccinium Myrtillus) in combination with lactic acid bacteria on intestinal oxidative stress induced by ischemia-reperfusion in mouse. J Agric Food Chem. 61 (14), 3468- 3478.
Khalil R.K.S. (2010). Influence of gallic acid and catechin polyphenols on probiotic properties of Streptococcus thermophilus CHCC 3534 strain. World J Microbiol Biotechnol. 26:2069–2079.
Kim Y., Oh S., Kim S.H. (2009). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun. 379(2):324- 329.
Looijesteijn PJ, Trapet L., de Vries E., Abee T., Hugenholtz J. (2001) Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol. 64 (1-2):71–80.
MacFie J. (2005). Current status of bacterial translocation as a cause of surgical sepsis. Br Med Bull. 71 (1):1-11.
Mao Y., Yu J.L., Ljungh A., Molin G., Jeppsson B. (1996). Response to oral administration of Lactobacillus reuteri R2LC, Lactobacillus plantarum DSM 9843, pectin and oatbase on methrotrexate-induced enterocolitis in rats. Microb Ecol Health Dis. 9 (6):261-269.
Muigei S.C., Shitandi A., Muliro P. (2014). Effect of incubation period and growth medium composition on exopolysaccharides yield with indigenous fermented Kenyan Mursik milk. Int J Biol Pharm Allied Sci. 3 (3):248-271.
Nabet N., Boudries H., Loupassaki S., Souagui S., Madani K., Carbonell-Barrachina A.A. (2017). Chemical composition, antimicrobial and antioxydant activities of Thymus fontanesii Boiss. et Reut. And Origanum glandulosum Desf. Essential oils. Int Food Res J. 24 (6):2518-2525.
Patel S., Majumder A., Goyal A. (2012). Potential of exopolysaccharides from lactic acid bacteria. Indian J Microbiol., 52 (1):3–12.
Ruas-Madiedo P., Gueimonde M., Margolles A., de los Reyes-Gavilan C.G, Salminen S. (2006). Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J. Food Prot. 69 (8):2011–2015.
Scarpignato C., Lanas Á. (2006). Bacterial Flora in Digestive Disease:Focus on Rifaximin. Digestion 73 (1):1-2.
The NIH HMP Working Group, Peterson J., Garges S., et al. (2009). The NIH Human Microbiome Project. Genome Res. 19:2317-2323.
Van Halbeek H. (1994). NMR developments in structural studies of carbohydrates and their complexes. Curr Opin Struct Biol, 4 (5), 697–709.
Welman A. D., Maddox I. S. (2003). Exopolysaccharides from lactic acid bacteria:perspectives and challenges. Trends Biotechnol. 21 (6):269–274.
Wu Q., Tun M. H., Leung F. C., Shah N. P. (2014). Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep. 15 (4):4974.
Ye M., Liu D., Zhang R., Yang L. and Wang J. (2012). Effect of hawk tea (Litsea coreana L.) on the numbers of lactic acid bacteria and flavour compounds of yoghurt. Int Dairy J. 23 (1):68-71.