Features of experimental modeling of tuberculosis in guinea pig with the participation of N'-(2-(5-((thephylline-7' yl)methyl)-4-R-1,2,4-triazole- ylthio)acethyl)isonicotinohydrazide

Abstract

А.S. Gotsulya, V.V. Zazhzharskiy, P.O. Davidenko, N.M. Zazhzharskaya, O.M. Kulishenko, O.I. Panasenko, B.V. Gutyj, O.B. Pryima, I.Y. Mazur, V.V. Pritsak, U.R. Drachuk, A.G. Sobolta, M.B. Riy

In this study, no toxic effects were detected after single subcutaneous injection of 40 mg/kg tadpoles. The results of macro- and microscopic examination of the internal organs 14 days after single subcutaneous administration of N'-(2-(5-((thephylline-7'-yl)methyl)-4-ethyl-1,2,4-triazole-3-ylthio)acethyl)isonicotino-hydrazide (GKP-305) at a dose of 20, 40 mg/kg showed the absence of any anatomical and morphological abnormalities in the tissue structures of the tentacles. The calculated value of the drug indicates a high degree of safety GKP-305 and its prospects for veterinary practice as an effective and safe tuberculocidal drug.

Key words: Tuberculosis, 1,2,4-triazole, modeling, guinea pig
 

References

 

Bihdan, O., Parchenko, V., Zazharskyi, V., Fotina, T., & Davydenko, P. (2019). Studying of physico-chemical properties of 5-(2-,3-fluorophenyl)-4-((aryl-, geteryl)yliden)amino-1,2,4-triazole-3-thiols and any of their retrievalproducts, Res. J. Pharm. Biol. Chem. Sci., 10(1), 464–474.

Chachibaia, T., & Hoskeri, J. H. (2016). Predictive Toxicity of Conventional Triazole Pesticides by Simulating Inhibitory Effect on Human Aromatase CYP19 Enzyme. International Journal of Knowledge Discovery in Bioinformatics, 6(2), 44–56. doi:10.4018/ijkdb.2016070104

Fard, J., Hamzeiy, H., Sattari, M., Eftekhari, A., Ahmadian, E., & Eghbal, M. (2016). Triazole rizatriptan Induces Liver Toxicity through Lysosomal/Mitochondrial Dysfunction. Drug Research, 66(09), 470–478. doi: 10.1055/s-0042-110178

Gotsulia, A. S., Zazharskyi, V. V., & Davydenko, P. O. (2018). Synthesis and antituberculosis activity of N'-(2-(5-((theophylline-7'-yl)methyl)-4-R-4H-1,2,4-triazole-3-ylthio)acetyl)isonicotino-hydrazides. Zaporozhye medical journal, 20(4), 578–583. doi: 10.14739/2310-1210.2018.4.135677

Haegler, P., Joerin, L., Krähenbühl, S., & Bouitbir, J. (2017). Hepatocellular Toxicity of Imidazole and Triazole Antimycotic Agents. Toxicological Sciences, 157(1), 183–195. doi:10.1093/toxsci/kfx029

Hunchak, V. M., Martynyshyn, V. P., Gutyj, B. V., Hunchak, A. V., Stefanyshyn, O. M., & Parchenko, V. V. (2020). Impact of 1,2,4-thio-triazole derivative-based liniment on morphological and immunological blood parameters of dogs suffering from dermatomycoses. Regulatory Mechanisms in Biosystems, 11(2), 294–298. doi: 10.15421/022044

Neofytos, D. (2010). Clinical safety and tolerability issues in use of triazole derivatives in management of fungal infections. Drug, Healthcare and Patient Safety, 2, 27–38. doi: 10.2147/dhps.s6321

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kulishenko, O M., & Borovik, I. V. (2020). Chemical composition and antibacterial effect of ethanolic extract of Buxus sempervirens on cryogenic strains of microorganisms in vitro. Chemical Data Collections, 25, 100323.

Samelyuk, Y. G., & Kaplaushenko, A. G. (2015). Acute toxicity of 5-(2-, 3-, 4-methoxyphenyl, (3,4,5-trimethoxyphenyl)-1,2,4-triazole-3-thiones and its thioderivatives. Current Issues in Pharmacy and Medicine: Science and Practice, 3(19), 57–60. doi: 10.14739/2409-2932.2015.3.52660

Stephanov, O. V. (2001). Doklinichni doslidzhennia likarskikh zasobiv [Preclinical studies of medicines]. ??yiv: Avicenna (in Ukrainian).

Zazharskyi, V., Davydenko, P., Kulishenko, O., Borovik, I., & Brygadyrenko, V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169. doi: 10.15421/011922

Share this article