Effect of a complex prebiotic preparation on the preservation, growth intensity and microflora in rabbits intestine

Abstract

V.P. Lyasota, T.I. Bakhur, M.V. Utechenko, M.M. Fedorchenko, I.O. Rublenko, N.V. Bukalova, N.M. Bogatko, A.A. Antipov, S.A . Tkachuk, T.M. Prilipko, N.I. Sakhniuk, A.F. Bogatko

We presented the effect of prebiotic "Bio-active" on preservation, increase of the body weight, the microflora composition in the distal small intestine, histological examination of the intestinal wall and liver of rabbits gray giant breed 45 days aged. Prebiotic "Bio-active" contains products of metabolism of lactic acid bacteria Lactobacillus bulgaricus delbrueckii adsorbed on zeolite. Our results proved the safety of this prebiotic for the rabbits. Optimal scheme for oral administration of the prebiotic was 2.0 g per 1 kg of body weight for 30 days. Such a course provided 95% of animal preservation and increase in the weight gain of the experimental animals, an average of 43.1% compared with the non-treated rabbits. In scarifies of distal intestine in 20% of animals that received the prebiotic and in 100% of those who did not receive it, Bacteria of Proteus genus have been detected. After the course of prebiotic we registered an increased number of Enterobacteriaceae (4.5–6.0 × 108 CFU) and Bifidobacteria (8 × 107–108 CFU) in rabbits’ intestines. We also mentioned the enhanced gram-positive/gram-negative ratio with a predominance of gram-positive (1:1.17 against 1:2.9 in control group). In case of prebiotic usage, the stimulation of goblet cells’ development was determined in the small intestine walls. Almost 100% of rabbits, who did not receive the prebiotic, had dystrophic changes in hepatocytes (74.5 % of the animals had fatty hepato-dystrophy and 25 % had protein granular dystrophy). We registered that only 25% of the animals had fatty hepato-dystrophy and 15% had protein granular dystrophy among those, which received the preparation.
Keywords:  prebiotic; microflora; rabbits; intestine; metabolism; resistance; productivity

 

References

Alturkistani, H.A., Tashkandi, F.M., & Mohammedsaleh, Z.M. (2015). Histological Stains: A Literature Review and Case Study. Global journal of health science, 8(3), 72−79. https://doi.org/10.5539/gjhs.v8n3p72

Arrazuria, R., Elguezabal, N., Juste, R.A., Derakhshani, H., & Khafipour, E. (2016). Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Front. Microbiol, 7, 446. https://doi.org/10.3389/fmicb.2016.00446

Badr, H.M. (2004). Use of irradiation to control foodborne pathogens and extend the refrigerated market life of rabbit meat. Meat Science, 67(4), 541–548. https://doi.org/10.1016/j.meatsci.2003.11.018.

Bellmann, S., Carlander, D., Fasano, A., Momcilovic, D., Scimeca, J.A., Waldman, W.J., Gombau, L., Tsytsikova, L., Canady, R., Pereira, D.I.A., & Lefebvre, D.E. (2015). Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food???relevant nanomaterials. WIREs Nanomedicine and Nanobiotechnology, 7(5), 609−622. https://doi.org/10.1002/wnan.1333

Beyene, T. (2016). Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. J Veterinar Sci Technol, 7(1), 285−291. http://dx.doi.org/10.4172/2157-7579.1000285

Bhatt, R.S., Agrawal, A.R., & Sahoo, A. (2017). Effect of probiotic supplementation on growth performance, nutrient utilization and carcass characteristics of growing Chinchilla rabbits. Journal of Applied Animal Research, 45(1), 304–309. https://doi.org/10.1080/09712119.2016.1174126

Blaser, M.J. (2016). Antibiotic use and its consequences for the normal microbiome. Science, 352(6285), 544−545. https://doi.org/10.1126/science.aad9358

Cheng, H.M. (2016) Secretion of Digestive Juices. In: Cheng H. (eds) Physiology Question-Based Learning. Springer, Singapore. https://doi.org/10.1007/978-981-10-0877-1_11

Donaldson, G.P., Lee, S.M., & Mazmanian, S.K. (2016). Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 14, 20–32. https://doi.org/10.1038/nrmicro3552

Ford, A.C., Harris, L.A., Lacy, B.E., Quigley, E.M.M., Moayyedi, P. (2018). Systematic review with meta???analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 48(10), 1044−1060. https://doi.org/10.1111/apt.15001

Geetanjali Sharma, K., Vidyarthi, V.K., Archana, K., & Zuyie, R. (2016). Probiotic Supplementation in the Diet of Rabbits – A Review. Livestock Research International, 4(1), 01–10.

Goldwater, P.N., & Bettelheim, K.A. (2012). Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Medicine, 10, 12−19. https://doi.org/10.1186/1741-7015-10-12

Lankelma, J.M., van Vught, L.A., Belzer, C., Schultz, M.J., van der Poll, T., de Vos, W.M., & Wiersinga, W.J. (2017). Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med, 43, 59−68. https://doi.org/10.1007/s00134-016-4613-z

Lauková, A., Simonová, M.P., Chrastinová, L., Plachá, I., ??obanová, K., Formelová, Z., Chrenková, M., Ondruška, L., & Strompfová, V. (2016). Benefits of combinative application of probiotic, enterocin M-producing strain Enterococcus faeciumAL41 and Eleutherococcus senticosus in rabbits. Folia Microbiol, 61(2), 169–177. https://doi.org/10.1007/s12223-015-0423-x

Ly, N.P., Litonjua, A., Gold, D.R., & Celedón, J.C. (2011). Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity? Journal of Allergy and Clinical Immunology, 127(5), 1087−1094. https://doi.org/10.1016/j.jaci.2011.02.015

Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, G.J., & Singh, R. (2016). Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metabolism, 23(1), 113–127. https://doi.org/10.1016/j.cmet.2015.10.008

Matsubara, V.H., Bandara, H.M.H.N., Mayer, M.P.A., & Samaranayake, L.P. (2016). Probiotics as Antifungals in Mucosal Candidiasis. Clinical Infectious Diseases, 62(9), 1143–1153. https://doi.org/10.1093/cid/ciw038

Mayada, R.F., Taghred, M.S., & Haytham, A.A. (2015). Boldenone-induced apoptotic, structural, and functional alterations in the liver of rabbits. World Rabbit Science, 23(1), 39–46. https://doi.org/10.4995/wrs.2015.2261.

McGuckin, M.A., Lindén, S.K., Sutton, P., & Florin, T.H. (2011). Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 9, 265–278. https://doi.org/10.1038/nrmicro2538

Phuoc, T.L., & Jamikorn, U. (2016). Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits. Asian-Australasian journal of animal sciences. 30(2), 198−205. https://doi.org/10.5713/ajas.15.0823

Pinnock, A., Shivshetty, N., Roy, S., Rimmer, S., Douglas, I., MacNeil, S., & Garg, P. (2017). Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol. 255(2), 333–342. https://doi.org/10.1007/s00417-016-3546-0

Rios, D.,  Wood, M.B., Li, J., Chassaing, B., Gewirtz, A.T., & Williams, I.R. (2016). Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunology. 9, 907–916. https://doi.org/10.1038/mi.2015.121

Saponaro, ?., Gaggini, M., Carli, F., & Gastaldelli, A. (2015). The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients, 7(11), 9453–9474. https://doi.org/10.3390/nu7115475

Sassone-Corsi, M., & Raffatellu, M. (2015). No Vacancy: How Beneficial Microbes Cooperate with Immunity To Provide Colonization Resistance to Pathogens. The Journal of Immunology, 194(9), 4081–4087. https://doi.org/10.4049/jimmunol.1403169

Satish, L., Gallo, P.H., Johnson, S., Yates, C.C., & Kathju, S. (2017). Local Probiotic Therapy with Lactobacillus plantarum Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surgical Infections, 18(2), 119–127. https://doi.org/10.1089/sur.2016.090

Sikorska, H., & Smoragiewicz, W. (2013). Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. International Journal of Antimicrobial Agents, 42(6), 475-481. https://doi.org/10.1016/j.ijantimicag.2013.08.003

Stockert, J.C., Horobin, R.W., Colombo, L.L., & Blázquez-Castro, A. (2018). Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta histochemical, 120(3), 159−167. https://doi.org/10.1016/j.acthis.2018.02.005

Tahara, Y., & Shibata, S. (2016). Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nature Reviews Gastroenterology & Hepatology, 13, 217–226. https://doi.org/10.1038/nrgastro.2016.8

Thompson, R., Perry, J.D., Stanforth, S.P., & Dean, J.R. (2018). Rapid detection of hydrogen sulfide produced by pathogenic bacteria in focused growth media using SHS-MCC-GC-IMS. Microchemical Journal, 140, 232−240. https://doi.org/10.1016/j.microc.2018.04.026

Tsuboi, K., Nishitani, M., Takakura, A., Imai, Y., Komatsu, M., & Kawashima, H. (2015). Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus. The Journal of Biological Chemistry, 290, 20511−20526.

Vivijs, B., Haberbeck, L.U., Baiye Mfortaw Mbong, V., Bernaerts, K., Geeraerd, A.H., Aertsen, A., & Michiels, C.W. (2015). Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front. Microbiol, 6, 150. https://doi.org/10.3389/fmicb.2015.00150

Wiley, N.C., Dinan, T.G., Ross, R.P., Stanton, C., Clarke, G., & Cryan, J.F. (2017). The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. Journal of Animal Science, 95(7), 3225–3246. https://doi.org/10.2527/jas.2016.1256

Yang, F., Wang, A., Zeng, X., Hou, C., Liu, H., & Qiao, S. (2015). Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiology, 15, 32−42. https://doi.org/10.1186/s12866-015-0372-1

Zantow, J., Moreira, G.M.S.G., Dübel, S., & Hust, M. (2018). ORFeome Phage Display. In: Hust M., Lim T. (eds) Phage Display. Methods in Molecular Biology, 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_27

Zhang, Y., Hong P.-Y., LeChevallier, M.W., & Liu, W.-T. (2015). Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Mediaal Protection Agency. Appl. Environ. Microbiol, 81(17), 6012–6023. https://doi.org/10.1128/AEM.01510-15

Zihler, A., Gagnon, M., Chassard, C., & Lacroix, C. (2011). Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiology, 11, 264−276. https://doi.org/10.1186/1471-2180-11-264

Share this article